Abstract
Generalizing the notion of Newton polytope, we define the Newton-Okounkov body, respectively, for semigroups of integral points, graded algebras and linear series on varieties. We prove that any semigroup in the lattice ℤn is asymptotically approximated by the semigroup of all the points in a sublattice and lying in a convex cone. Applying this we obtain several results. We show that for a large class of graded algebras, the Hilbert functions have polynomial growth and their growth coefficients satisfy a Brunn-Minkowski type inequality. We prove analogues of the Fujita approximation theorem for semigroups of integral points and graded algebras, which imply a generalization of this theorem for arbitrary linear series. Applications to intersection theory include a far-reaching generalization of the Kushnirenko theorem (from Newton polytope theory) and a new version of the Hodge inequality. We also give elementary proofs of the Alexandrov-Fenchel inequality in convex geometry and its analogue in algebraic geometry.

KEYWORDS

SHARE & LIKE

COMMENTS

SIMILAR ARTICLES

Abstract For any nondegenerate, quasi-homogeneous hypersurface singularity, we describe a family of moduli spaces, a virtual cycle, and a correspondin

阅读更多Abstract For a large class of nonlinear Schrödinger equations with nonzero conditions at infinity and for any speed c less than the sound velocity, we

阅读更多Abstract Let L2,p(ℝ2) be the Sobolev space of real-valued functions on the plane whose Hessian belongs to Lp. For any finite subset E⊂ℝ2 and p>2, let

阅读更多Abstract We prove that for any group G in a fairly large class of generalized wreath product groups, the associated von Neumann algebra LG completely

阅读更多Abstract We study the parity of 2-Selmer ranks in the family of quadratic twists of an arbitrary elliptic curve E over an arbitrary number field K. We

阅读更多Abstract This paper has two main results. Firstly, we complete the parametrisation of all p-blocks of finite quasi-simple groups by finding the so-cal

阅读更多Abstract We derive sharp Moser-Trudinger inequalities on the CR sphere. The first type is in the Adams form, for powers of the sublaplacian and for ge

阅读更多Abstract We prove that isoparametric hypersurfaces with (g,m)=(6,2) are homogeneous, which answers Dorfmeister-Neher’s conjecture affirmatively and so

阅读更多Abstract We prove the periodicity conjecture for pairs of Dynkin diagrams using Fomin-Zelevinsky’s cluster algebras and their (additive) categorificat

阅读更多Abstract If F(x,y)∈ℤ[x,y] is an irreducible binary form of degree k≥3, then a theorem of Darmon and Granville implies that the generalized superellipt

阅读更多