Abstract
In this paper we study functions with low influences on product probability spaces. These are functions f:Ω1×⋯×Ωn→ℝ that have E[VarΩi[f]] small compared to Var[f] for each i. The analysis of boolean functions f:{−1,1}n→{−1,1} with low influences has become a central problem in discrete Fourier analysis. It is motivated by fundamental questions arising from the construction of probabilistically checkable proofs in theoretical computer science and from problems in the theory of social choice in economics.
We prove an invariance principle for multilinear polynomials with low influences and bounded degree; it shows that under mild conditions the distribution of such polynomials is essentially invariant for all product spaces. Ours is one of the very few known nonlinear invariance principles. It has the advantage that its proof is simple and that its error bounds are explicit. We also show that the assumption of bounded degree can be eliminated if the polynomials are slightly “smoothed”; this extension is essential for our applications to “noise stability”-type problems.
In particular, as applications of the invariance principle we prove two conjectures: Khot, Kindler, Mossel, and O’Donnell’s “Majority Is Stablest” conjecture from theoretical computer science, which was the original motivation for this work, and Kalai and Friedgut’s “It Ain’t Over Till It’s Over” conjecture from social choice theory.

KEYWORDS

SHARE & LIKE

COMMENTS

SIMILAR ARTICLES

Abstract For any nondegenerate, quasi-homogeneous hypersurface singularity, we describe a family of moduli spaces, a virtual cycle, and a correspondin

Read MoreAbstract For a large class of nonlinear Schrödinger equations with nonzero conditions at infinity and for any speed c less than the sound velocity, we

Read MoreAbstract Let L2,p(ℝ2) be the Sobolev space of real-valued functions on the plane whose Hessian belongs to Lp. For any finite subset E⊂ℝ2 and p>2, let

Read MoreAbstract We prove that for any group G in a fairly large class of generalized wreath product groups, the associated von Neumann algebra LG completely

Read MoreAbstract We study the parity of 2-Selmer ranks in the family of quadratic twists of an arbitrary elliptic curve E over an arbitrary number field K. We

Read MoreAbstract This paper has two main results. Firstly, we complete the parametrisation of all p-blocks of finite quasi-simple groups by finding the so-cal

Read MoreAbstract We derive sharp Moser-Trudinger inequalities on the CR sphere. The first type is in the Adams form, for powers of the sublaplacian and for ge

Read MoreAbstract We prove that isoparametric hypersurfaces with (g,m)=(6,2) are homogeneous, which answers Dorfmeister-Neher’s conjecture affirmatively and so

Read MoreAbstract We prove the periodicity conjecture for pairs of Dynkin diagrams using Fomin-Zelevinsky’s cluster algebras and their (additive) categorificat

Read MoreAbstract If F(x,y)∈ℤ[x,y] is an irreducible binary form of degree k≥3, then a theorem of Darmon and Granville implies that the generalized superellipt

Read More