Abstract
One goal of this paper is to prove that dynamical critical site percolation on the planar triangular lattice has exceptional times at which percolation occurs. In doing so, new quantitative noise sensitivity results for percolation are obtained. The latter is based on a novel method for controlling the “level k” Fourier coefficients via the construction of a randomized algorithm which looks at random bits, outputs the value of a particular function but looks at any fixed input bit with low probability. We also obtain upper and lower bounds on the Hausdorff dimension of the set of percolating times. We then study the problem of exceptional times for certain “k-arm” events on wedges and cones. As a corollary of this analysis, we prove, among other things, that there are no times at which there are two infinite “white” clusters, obtain an upper bound on the Hausdorff dimension of the set of times at which there are both an infinite white cluster and an infinite black cluster and prove that for dynamical critical bond percolation on the square grid there are no exceptional times at which three disjoint infinite clusters are present.

KEYWORDS

SHARE & LIKE

COMMENTS

SIMILAR ARTICLES

Abstract For any nondegenerate, quasi-homogeneous hypersurface singularity, we describe a family of moduli spaces, a virtual cycle, and a correspondin

阅读更多Abstract For a large class of nonlinear Schrödinger equations with nonzero conditions at infinity and for any speed c less than the sound velocity, we

阅读更多Abstract Let L2,p(ℝ2) be the Sobolev space of real-valued functions on the plane whose Hessian belongs to Lp. For any finite subset E⊂ℝ2 and p>2, let

阅读更多Abstract We prove that for any group G in a fairly large class of generalized wreath product groups, the associated von Neumann algebra LG completely

阅读更多Abstract We study the parity of 2-Selmer ranks in the family of quadratic twists of an arbitrary elliptic curve E over an arbitrary number field K. We

阅读更多Abstract This paper has two main results. Firstly, we complete the parametrisation of all p-blocks of finite quasi-simple groups by finding the so-cal

阅读更多Abstract We derive sharp Moser-Trudinger inequalities on the CR sphere. The first type is in the Adams form, for powers of the sublaplacian and for ge

阅读更多Abstract We prove that isoparametric hypersurfaces with (g,m)=(6,2) are homogeneous, which answers Dorfmeister-Neher’s conjecture affirmatively and so

阅读更多Abstract We prove the periodicity conjecture for pairs of Dynkin diagrams using Fomin-Zelevinsky’s cluster algebras and their (additive) categorificat

阅读更多Abstract If F(x,y)∈ℤ[x,y] is an irreducible binary form of degree k≥3, then a theorem of Darmon and Granville implies that the generalized superellipt

阅读更多