The Atiyah-Singer index formula for subelliptic operators on contact manifolds. Part I | Annals of Mathematics

Abstract The Atiyah-Singer index theorem gives a topological formula for the index of an elliptic differential operator. The topological index depends on a cohomology class that is constructed from the principal symbol of the operator. On contact manifolds, the important Fredholm operators are not elliptic, but hypoelliptic. Their symbolic calculus is noncommutative, and is closely related to analysis on the Heisenberg group. For a hypoelliptic differential operator in the Heisenberg calculus on a contact manifold we construct a symbol class in the K-theory of a noncommutative C∗-algebra that is associated to the algebra of symbols. There is a canonical map from this analytic K-theory group to the ordinary cohomology of the manifold, which gives a de Rham class to which the Atiyah-Singer formula can be applied. We prove that the index formula holds for these hypoelliptic operators. Our methods derive from Connes’ tangent groupoid proof of the index theorem.

KEYWORDS

SHARE & LIKE

COMMENTS

ABOUT THE AUTHOR

数学年刊(Annals of Mathematics)

0 Following 0 Fans 0 Projects 674 Articles

SIMILAR ARTICLES

Abstract For any nondegenerate, quasi-homogeneous hypersurface singularity, we describe a family of moduli spaces, a virtual cycle, and a correspondin

阅读更多

Abstract For a large class of nonlinear Schrödinger equations with nonzero conditions at infinity and for any speed c less than the sound velocity, we

阅读更多

Abstract Let L2,p(ℝ2) be the Sobolev space of real-valued functions on the plane whose Hessian belongs to Lp. For any finite subset E⊂ℝ2 and p>2, let

阅读更多

Abstract We prove that for any group G in a fairly large class of generalized wreath product groups, the associated von Neumann algebra LG completely

阅读更多

Abstract We study the parity of 2-Selmer ranks in the family of quadratic twists of an arbitrary elliptic curve E over an arbitrary number field K. We

阅读更多

Abstract This paper has two main results. Firstly, we complete the parametrisation of all p-blocks of finite quasi-simple groups by finding the so-cal

阅读更多

Abstract We derive sharp Moser-Trudinger inequalities on the CR sphere. The first type is in the Adams form, for powers of the sublaplacian and for ge

阅读更多

Abstract We prove that isoparametric hypersurfaces with (g,m)=(6,2) are homogeneous, which answers Dorfmeister-Neher’s conjecture affirmatively and so

阅读更多

Abstract We prove the periodicity conjecture for pairs of Dynkin diagrams using Fomin-Zelevinsky’s cluster algebras and their (additive) categorificat

阅读更多

Abstract If F(x,y)∈ℤ[x,y] is an irreducible binary form of degree k≥3, then a theorem of Darmon and Granville implies that the generalized superellipt

阅读更多