Measure equivalence rigidity of the mapping class group | Annals of Mathematics

Abstract We show that the mapping class group of a compact orientable surface with higher complexity satisfies the following rigidity in the sense of measure equivalence: If the mapping class group is measure equivalent to a discrete group, then they are commensurable up to finite kernels. Moreover, we describe all locally compact second countable groups containing a lattice isomorphic to the mapping class group. We obtain similar results for finite direct products of mapping class groups.

KEYWORDS

SHARE & LIKE

COMMENTS

ABOUT THE AUTHOR

数学年刊(Annals of Mathematics)

0 Following 0 Fans 0 Projects 674 Articles

SIMILAR ARTICLES

Abstract For any nondegenerate, quasi-homogeneous hypersurface singularity, we describe a family of moduli spaces, a virtual cycle, and a correspondin

阅读更多