Minimal co-volume hyperbolic lattices, I: The spherical points of a Kleinian group | Annals of Mathematics

Abstract We identify the two minimal co-volume lattices of the isometry group of hyperbolic 3-space that contain a finite spherical triangle group. These two groups are arithmetic and are in fact the two minimal co-volume lattices. Our results here represent the key step in establishing this fact, thereby solving a problem posed by Siegel in 1945. As a consequence we obtain sharp bounds on the order of the symmetry group of a hyperbolic 3-manifold in terms of its volume, analogous to the Hurwitz 84g−84 theorem of 1892. The finite spherical subgroups of a Kleinian group give rise to the vertices of the singular graph in the quotient orbifold. We identify the small values of the discrete spectrum of hyperbolic distances between these vertices and show these small values give rise to arithmetic lattices. Once vertices are sufficiently separated, one obtains volume bounds by studying equivariant sets.

KEYWORDS

SHARE & LIKE

COMMENTS

ABOUT THE AUTHOR

数学年刊(Annals of Mathematics)

0 Following 0 Fans 0 Projects 674 Articles

SIMILAR ARTICLES

Abstract For any nondegenerate, quasi-homogeneous hypersurface singularity, we describe a family of moduli spaces, a virtual cycle, and a correspondin

阅读更多

Abstract For a large class of nonlinear Schrödinger equations with nonzero conditions at infinity and for any speed c less than the sound velocity, we

阅读更多

Abstract Let L2,p(ℝ2) be the Sobolev space of real-valued functions on the plane whose Hessian belongs to Lp. For any finite subset E⊂ℝ2 and p>2, let

阅读更多

Abstract We prove that for any group G in a fairly large class of generalized wreath product groups, the associated von Neumann algebra LG completely

阅读更多

Abstract We study the parity of 2-Selmer ranks in the family of quadratic twists of an arbitrary elliptic curve E over an arbitrary number field K. We

阅读更多

Abstract This paper has two main results. Firstly, we complete the parametrisation of all p-blocks of finite quasi-simple groups by finding the so-cal

阅读更多

Abstract We derive sharp Moser-Trudinger inequalities on the CR sphere. The first type is in the Adams form, for powers of the sublaplacian and for ge

阅读更多

Abstract We prove that isoparametric hypersurfaces with (g,m)=(6,2) are homogeneous, which answers Dorfmeister-Neher’s conjecture affirmatively and so

阅读更多

Abstract We prove the periodicity conjecture for pairs of Dynkin diagrams using Fomin-Zelevinsky’s cluster algebras and their (additive) categorificat

阅读更多

Abstract If F(x,y)∈ℤ[x,y] is an irreducible binary form of degree k≥3, then a theorem of Darmon and Granville implies that the generalized superellipt

阅读更多