Abstract
Weyl group multiple Dirichlet series were associated with a root system Φ and a number field F containing the n-th roots of unity by Brubaker, Bump, Chinta, Friedberg and Hoffstein [3] and Brubaker, Bump and Friedberg [4] provided n is sufficiently large; their coefficients involve n-th order Gauss sums. The case where n is small is harder, and is addressed in this paper when Φ=Ar. “Twisted” Dirichet series are considered, which contain the series of [4] as a special case. These series are not Euler products, but due to the twisted multiplicativity of their coefficients, they are determined by their p-parts. The p-part is given as a sum of products of Gauss sums, parametrized by strict Gelfand-Tsetlin patterns. It is conjectured that these multiple Dirichlet series are Whittaker coefficients of Eisenstein series on the n-fold metaplectic cover of GLr+1, and this is proved if r=2 or n=1. The equivalence of our definition with that of Chinta [11] when n=2 and r⩽5 is also established.

KEYWORDS

SHARE & LIKE

COMMENTS

SIMILAR ARTICLES

Abstract For any nondegenerate, quasi-homogeneous hypersurface singularity, we describe a family of moduli spaces, a virtual cycle, and a correspondin

阅读更多Abstract For a large class of nonlinear Schrödinger equations with nonzero conditions at infinity and for any speed c less than the sound velocity, we

阅读更多Abstract Let L2,p(ℝ2) be the Sobolev space of real-valued functions on the plane whose Hessian belongs to Lp. For any finite subset E⊂ℝ2 and p>2, let

阅读更多Abstract We prove that for any group G in a fairly large class of generalized wreath product groups, the associated von Neumann algebra LG completely

阅读更多Abstract We study the parity of 2-Selmer ranks in the family of quadratic twists of an arbitrary elliptic curve E over an arbitrary number field K. We

阅读更多Abstract This paper has two main results. Firstly, we complete the parametrisation of all p-blocks of finite quasi-simple groups by finding the so-cal

阅读更多Abstract We derive sharp Moser-Trudinger inequalities on the CR sphere. The first type is in the Adams form, for powers of the sublaplacian and for ge

阅读更多Abstract We prove that isoparametric hypersurfaces with (g,m)=(6,2) are homogeneous, which answers Dorfmeister-Neher’s conjecture affirmatively and so

阅读更多Abstract We prove the periodicity conjecture for pairs of Dynkin diagrams using Fomin-Zelevinsky’s cluster algebras and their (additive) categorificat

阅读更多Abstract If F(x,y)∈ℤ[x,y] is an irreducible binary form of degree k≥3, then a theorem of Darmon and Granville implies that the generalized superellipt

阅读更多