A geometric Littlewood–Richardson rule | Annals of Mathematics

Abstract We describe a geometric Littlewood-Richardson rule, interpreted as deforming the intersection of two Schubert varieties into the union of Schubert varieties. There are no restrictions on the base field, and all multiplicities arising are 1; this is important for applications. This rule should be seen as a generalization of Pieri’s rule to arbitrary Schubert classes, by way of explicit homotopies. It has straightforward bijections to other Littlewood-Richardson rules, such as tableaux, and Knutson and Tao’s puzzles. This gives the first geometric proof and interpretation of the Littlewood-Richardson rule. Geometric consequences are described here and in [V2], [KV1], [KV2], [V3]. For example, the rule also has an interpretation in K-theory, suggested by Buch, which gives an extension of puzzles to K-theory.

KEYWORDS

SHARE & LIKE

COMMENTS

ABOUT THE AUTHOR

数学年刊(Annals of Mathematics)

0 Following 0 Fans 0 Projects 674 Articles

SIMILAR ARTICLES

Abstract For any nondegenerate, quasi-homogeneous hypersurface singularity, we describe a family of moduli spaces, a virtual cycle, and a correspondin

阅读更多

Abstract For a large class of nonlinear Schrödinger equations with nonzero conditions at infinity and for any speed c less than the sound velocity, we

阅读更多

Abstract Let L2,p(ℝ2) be the Sobolev space of real-valued functions on the plane whose Hessian belongs to Lp. For any finite subset E⊂ℝ2 and p>2, let

阅读更多

Abstract We prove that for any group G in a fairly large class of generalized wreath product groups, the associated von Neumann algebra LG completely

阅读更多

Abstract We study the parity of 2-Selmer ranks in the family of quadratic twists of an arbitrary elliptic curve E over an arbitrary number field K. We

阅读更多

Abstract This paper has two main results. Firstly, we complete the parametrisation of all p-blocks of finite quasi-simple groups by finding the so-cal

阅读更多

Abstract We derive sharp Moser-Trudinger inequalities on the CR sphere. The first type is in the Adams form, for powers of the sublaplacian and for ge

阅读更多

Abstract We prove that isoparametric hypersurfaces with (g,m)=(6,2) are homogeneous, which answers Dorfmeister-Neher’s conjecture affirmatively and so

阅读更多

Abstract We prove the periodicity conjecture for pairs of Dynkin diagrams using Fomin-Zelevinsky’s cluster algebras and their (additive) categorificat

阅读更多

Abstract If F(x,y)∈ℤ[x,y] is an irreducible binary form of degree k≥3, then a theorem of Darmon and Granville implies that the generalized superellipt

阅读更多