Isometric actions of simple Lie groups on pseudoRiemannian manifolds | Annals of Mathematics

Abstract Let M be a connected compact pseudoRiemannian manifold acted upon topologically transitively and isometrically by a connected noncompact simple Lie group G. If m0,n0 are the dimensions of the maximal lightlike subspaces tangent to M and G, respectively, where G carries any bi-invariant metric, then we have n0≤m0. We study G-actions that satisfy the condition n0=m0. With no rank restrictions on G, we prove that M has a finite covering Mˆ to which the G-action lifts so that Mˆ is G-equivariantly diffeomorphic to an action on a double coset K∖L/Γ, as considered in Zimmer’s program, with G normal in L (Theorem A). If G has finite center and rankℝ(G)≥2, then we prove that we can choose Mˆ for which L is semisimple and Γ is an irreducible lattice (Theorem B). We also prove that our condition n0=m0 completely characterizes, up to a finite covering, such double coset G-actions (Theorem C). This describes a large family of double coset G-actions and provides a partial positive answer to the conjecture proposed in Zimmer’s program.

KEYWORDS

SHARE & LIKE

COMMENTS

ABOUT THE AUTHOR

数学年刊(Annals of Mathematics)

0 Following 0 Fans 0 Projects 674 Articles

SIMILAR ARTICLES

Abstract For any nondegenerate, quasi-homogeneous hypersurface singularity, we describe a family of moduli spaces, a virtual cycle, and a correspondin

Read More

Abstract For a large class of nonlinear Schrödinger equations with nonzero conditions at infinity and for any speed c less than the sound velocity, we

Read More

Abstract Let L2,p(ℝ2) be the Sobolev space of real-valued functions on the plane whose Hessian belongs to Lp. For any finite subset E⊂ℝ2 and p>2, let

Read More

Abstract We prove that for any group G in a fairly large class of generalized wreath product groups, the associated von Neumann algebra LG completely

Read More

Abstract We study the parity of 2-Selmer ranks in the family of quadratic twists of an arbitrary elliptic curve E over an arbitrary number field K. We

Read More

Abstract This paper has two main results. Firstly, we complete the parametrisation of all p-blocks of finite quasi-simple groups by finding the so-cal

Read More

Abstract We derive sharp Moser-Trudinger inequalities on the CR sphere. The first type is in the Adams form, for powers of the sublaplacian and for ge

Read More

Abstract We prove that isoparametric hypersurfaces with (g,m)=(6,2) are homogeneous, which answers Dorfmeister-Neher’s conjecture affirmatively and so

Read More

Abstract We prove the periodicity conjecture for pairs of Dynkin diagrams using Fomin-Zelevinsky’s cluster algebras and their (additive) categorificat

Read More

Abstract If F(x,y)∈ℤ[x,y] is an irreducible binary form of degree k≥3, then a theorem of Darmon and Granville implies that the generalized superellipt

Read More