Abstract
In this paper we treat the two-variable positive extension problem for trigonometric polynomials where the extension is required to be the reciprocal of the absolute value squared of a stable polynomial. This problem may also be interpreted as an autoregressive filter design problem for bivariate stochastic processes. We show that the existence of a solution is equivalent to solving a finite positive definite matrix completion problem where the completion is required to satisfy an additional low rank condition. As a corollary of the main result a necessary and sufficient condition for the existence of a spectral Fejér-Riesz factorization of a strictly positive two-variable trigonometric polynomial is given in terms of the Fourier coefficients of its reciprocal.
Tools in the proofs include a specific two-variable Kronecker theorem based on certain elements from algebraic geometry, as well as a two-variable Christoffel-Darboux like formula. The key ingredient is a matrix valued polynomial that appears in a parametrized version of the Schur-Cohn test for stability. The results also have consequences in the theory of two-variable orthogonal polynomials where a spectral matching result is obtained, as well as in the study of inverse formulas for doubly-indexed Toeplitz matrices. Finally, numerical results are presented for both the autoregressive filter problem and the factorization problem.

KEYWORDS

SHARE & LIKE

COMMENTS

SIMILAR ARTICLES

Abstract For any nondegenerate, quasi-homogeneous hypersurface singularity, we describe a family of moduli spaces, a virtual cycle, and a correspondin

阅读更多Abstract For a large class of nonlinear Schrödinger equations with nonzero conditions at infinity and for any speed c less than the sound velocity, we

阅读更多Abstract Let L2,p(ℝ2) be the Sobolev space of real-valued functions on the plane whose Hessian belongs to Lp. For any finite subset E⊂ℝ2 and p>2, let

阅读更多Abstract We prove that for any group G in a fairly large class of generalized wreath product groups, the associated von Neumann algebra LG completely

阅读更多Abstract We study the parity of 2-Selmer ranks in the family of quadratic twists of an arbitrary elliptic curve E over an arbitrary number field K. We

阅读更多Abstract This paper has two main results. Firstly, we complete the parametrisation of all p-blocks of finite quasi-simple groups by finding the so-cal

阅读更多Abstract We derive sharp Moser-Trudinger inequalities on the CR sphere. The first type is in the Adams form, for powers of the sublaplacian and for ge

阅读更多Abstract We prove that isoparametric hypersurfaces with (g,m)=(6,2) are homogeneous, which answers Dorfmeister-Neher’s conjecture affirmatively and so

阅读更多Abstract We prove the periodicity conjecture for pairs of Dynkin diagrams using Fomin-Zelevinsky’s cluster algebras and their (additive) categorificat

阅读更多Abstract If F(x,y)∈ℤ[x,y] is an irreducible binary form of degree k≥3, then a theorem of Darmon and Granville implies that the generalized superellipt

阅读更多