Abstract
An extension of the Littlewood Restriction Rule is given that covers all pertinent parameters and simplifies to the original under Littlewood’s hypotheses. Two formulas are derived for the Gelfand-Kirillov dimension of any unitary highest weight representation occurring in a dual pair setting, one in terms of the dual pair index and the other in terms of the highest weight. For a fixed dual pair setting, all the irreducible highest weight representations which occur have the same Gelfand-Kirillov dimension.
We define a class of unitary highest weight representations and show that each of these representations, L, has a Hilbert series HL(q) of the form:
HL(q)=1(1−q)GKdimLR(q),
where R(q) is an explictly given multiple of the Hilbert series of a finite dimensional representation B of a real Lie algebra associated to L. Under this correspondence L→B , the two components of the Weil representation of the symplectic group correspond to the two spin representations of an orthogonal group. The article includes many other cases of this correspondence.

KEYWORDS

SHARE & LIKE

COMMENTS

SIMILAR ARTICLES

Abstract For any nondegenerate, quasi-homogeneous hypersurface singularity, we describe a family of moduli spaces, a virtual cycle, and a correspondin

Read MoreAbstract For a large class of nonlinear Schrödinger equations with nonzero conditions at infinity and for any speed c less than the sound velocity, we

Read MoreAbstract Let L2,p(ℝ2) be the Sobolev space of real-valued functions on the plane whose Hessian belongs to Lp. For any finite subset E⊂ℝ2 and p>2, let

Read MoreAbstract We prove that for any group G in a fairly large class of generalized wreath product groups, the associated von Neumann algebra LG completely

Read MoreAbstract We study the parity of 2-Selmer ranks in the family of quadratic twists of an arbitrary elliptic curve E over an arbitrary number field K. We

Read MoreAbstract This paper has two main results. Firstly, we complete the parametrisation of all p-blocks of finite quasi-simple groups by finding the so-cal

Read MoreAbstract We derive sharp Moser-Trudinger inequalities on the CR sphere. The first type is in the Adams form, for powers of the sublaplacian and for ge

Read MoreAbstract We prove that isoparametric hypersurfaces with (g,m)=(6,2) are homogeneous, which answers Dorfmeister-Neher’s conjecture affirmatively and so

Read MoreAbstract We prove the periodicity conjecture for pairs of Dynkin diagrams using Fomin-Zelevinsky’s cluster algebras and their (additive) categorificat

Read MoreAbstract If F(x,y)∈ℤ[x,y] is an irreducible binary form of degree k≥3, then a theorem of Darmon and Granville implies that the generalized superellipt

Read More