Poincaré inequalities in punctured domains | Annals of Mathematics

Abstract The classic Poincaré inequality bounds the Lq-norm of a function f in a bounded domain Ω⊂Rn in terms of some Lp-norm of its gradient in Ω. We generalize this in two ways: In the first generalization we remove a set Γ from Ω and concentrate our attention on Λ=Ω∖Γ. This new domain might not even be connected and hence no Poincaré inequality can generally hold for it, or if it does hold it might have a very bad constant. This is so even if the volume of Γ is arbitrarily small. A Poincaré inequality does hold, however, if one makes the additional assumption that f has a finite Lp gradient norm on the whole of Ω, not just on Λ. The important point is that the Poincaré inequality thus obtained bounds the Lq-norm of f in terms of the Lp gradient norm on Λ (not Ω) plus an additional term that goes to zero as the volume of Γ goes to zero. This error term depends on Γ only through its volume. Apart from this additive error term, the constant in the inequality remains that of the ‘nice’ domain Ω. In the second generalization we are given a vector field A and replace ∇ by ∇+iA(x) (geometrically, a connection on a U(1) bundle). Unlike the A=0 case, the infimum of ∥(∇+iA)f∥p over all f with a given ∥f∥q is in general not zero. This permits an improvement of the inequality by the addition of a term whose sharp value we derive. We describe some open problems that arise from these generalizations.

KEYWORDS

SHARE & LIKE

COMMENTS

ABOUT THE AUTHOR

数学年刊(Annals of Mathematics)

0 Following 0 Fans 0 Projects 674 Articles

SIMILAR ARTICLES

Abstract For any nondegenerate, quasi-homogeneous hypersurface singularity, we describe a family of moduli spaces, a virtual cycle, and a correspondin

阅读更多

Abstract For a large class of nonlinear Schrödinger equations with nonzero conditions at infinity and for any speed c less than the sound velocity, we

阅读更多

Abstract Let L2,p(ℝ2) be the Sobolev space of real-valued functions on the plane whose Hessian belongs to Lp. For any finite subset E⊂ℝ2 and p>2, let

阅读更多

Abstract We prove that for any group G in a fairly large class of generalized wreath product groups, the associated von Neumann algebra LG completely

阅读更多

Abstract We study the parity of 2-Selmer ranks in the family of quadratic twists of an arbitrary elliptic curve E over an arbitrary number field K. We

阅读更多

Abstract This paper has two main results. Firstly, we complete the parametrisation of all p-blocks of finite quasi-simple groups by finding the so-cal

阅读更多

Abstract We derive sharp Moser-Trudinger inequalities on the CR sphere. The first type is in the Adams form, for powers of the sublaplacian and for ge

阅读更多

Abstract We prove that isoparametric hypersurfaces with (g,m)=(6,2) are homogeneous, which answers Dorfmeister-Neher’s conjecture affirmatively and so

阅读更多

Abstract We prove the periodicity conjecture for pairs of Dynkin diagrams using Fomin-Zelevinsky’s cluster algebras and their (additive) categorificat

阅读更多

Abstract If F(x,y)∈ℤ[x,y] is an irreducible binary form of degree k≥3, then a theorem of Darmon and Granville implies that the generalized superellipt

阅读更多