细胞期刊(Cell)2013-09-05 2:57 AM

Cell - Bacterial-Derived Uracil as a Modulator of Mucosal Immunity and Gut-Microbe Homeostasis in Drosophila

Summary All metazoan guts are subjected to immunologically unique conditions in which an efficient antimicrobial system operates to eliminate pathogens while tolerating symbiotic commensal microbiota. However, the molecular mechanisms controlling this process are only partially understood. Here, we show that bacterial-derived uracil acts as a ligand for dual oxidase (DUOX)-dependent reactive oxygen species generation in Drosophila gut and that the uracil production in bacteria causes inflammation in the gut. The acute and controlled uracil-induced immune response is required for efficient elimination of bacteria, intestinal cell repair, and host survival during infection of nonresident species. Among resident gut microbiota, uracil production is absent in symbionts, allowing harmonious colonization without DUOX activation, whereas uracil release from opportunistic pathobionts provokes chronic inflammation. These results reveal that bacteria with distinct abilities to activate uracil-induced gut inflammation, in terms of intensity and duration, act as critical factors that determine homeostasis or pathogenesis in gut-microbe interactions.

KEYWORDS

SHARE & LIKE

COMMENTS

ABOUT THE AUTHOR

细胞期刊(Cell)

0 Following 2 Fans 0 Projects 125 Articles

SIMILAR ARTICLES

Epigenetic mechanisms have been proposed to play crucial roles in mammalian development, but their precise functions are only partially understood. To

Read More

Summary Replenishing insulin-producing pancreatic β cell mass will benefit both type I and type II diabetics. In adults, pancreatic β cells are gene

Read More

Summary Replenishing insulin-producing pancreatic β cell mass will benefit both type I and type II diabetics. In adults, pancreatic β cells are gene

Read More

Summary 5-methylcytosine is a major epigenetic modification that is sometimes called “the fifth nucleotide.” However, our knowledge of how offspring

Read More

Summary 5-methylcytosine is a major epigenetic modification that is sometimes called “the fifth nucleotide.” However, our knowledge of how offspring

Read More

Summary All metazoan guts are subjected to immunologically unique conditions in which an efficient antimicrobial system operates to eliminate pathog

Read More

Summary All metazoan guts are subjected to immunologically unique conditions in which an efficient antimicrobial system operates to eliminate pathog

Read More

Summary Alterations of symbiosis between microbiota and intestinal epithelial cells (IEC) are associated with intestinal and systemic pathologies. I

Read More

Summary Alterations of symbiosis between microbiota and intestinal epithelial cells (IEC) are associated with intestinal and systemic pathologies. I

Read More

Summary The most common form of heart failure occurs with normal systolic function and often involves cardiac hypertrophy in the elderly. To clarify

Read More