Nature2013-09-05 2:57 AM

Dynamic regulatory network controlling TH17 cell differentiation : Nature : Nature Publishing Group

Despite their importance, the molecular circuits that control the differentiation of naive T cells remain largely unknown. Recent studies that reconstructed regulatory networks in mammalian cells have focused on short-term responses and relied on perturbation-based approaches that cannot be readily applied to primary T cells. Here we combine transcriptional profiling at high temporal resolution, novel computational algorithms, and innovative nanowire-based perturbation tools to systematically derive and experimentally validate a model of the dynamic regulatory network that controls the differentiation of mouse TH17 cells, a proinflammatory T-cell subset that has been implicated in the pathogenesis of multiple autoimmune diseases. The TH17 transcriptional network consists of two self-reinforcing, but mutually antagonistic, modules, with 12 novel regulators, the coupled action of which may be essential for maintaining the balance between TH17 and other CD4+ T-cell subsets. Our study identifies and validates 39 regulatory factors, embeds them within a comprehensive temporal network and reveals its organizational principles; it also highlights novel drug targets for controlling TH17 cell differentiation.

KEYWORDS

SHARE & LIKE

COMMENTS

ABOUT THE AUTHOR

Nature

Nature Magazine

0 Following 24 Fans 0 Projects 626 Articles

SIMILAR ARTICLES

Meristems encompass stem/progenitor cells that sustain postembryonic growth of all plant organs. How meristems are activated and sustained by nutrient

Read More

Transcription of ribosomal RNA by RNA polymerase (Pol) I initiates ribosome biogenesis and regulates eukaryotic cell growth. The crystal structure of P

Read More

Abstract The effect of anthropogenic aerosols on cloud droplet concentrations and radiative properties is the source of one of the largest uncertainti

Read More

Abstract Ecological and societal disruptions by modern climate change are critically determined by the time frame over which climates shift beyond his

Read More

Abstract Evidence from Greenland ice cores shows that year-to-year temperature variability was probably higher in some past cold periods, but there is

Read More

论文摘要 FANTOM5 (即“哺乳动物基因组-5的功能注解”) 是一个大型国际合作项目的第5大阶段,其目标是分析定义每个人类细胞类型的转录调控网络。本期Nature上的两篇Articles论文发表了该项目的一些最新结果。第一篇论文利用FANTOM5项目组的组织和原代细胞样本来定义整个人体中活性的、在

Read More

论文摘要 有证据表明,血管 (尤其是它们的内皮细胞) 控制器官的生长、平衡和再生。在本期Nature上发表的两篇论文中,Ralf Adams及同事证明,骨头血管含有专门支持骨成熟和再生的内皮细胞。Anjali Kusumbe等人在小鼠骨骼系统内识别出一个在介导骨生长中起关键作用的毛细血管亚型。这些血管

Read More

论文摘要 CD4 T细胞(携带能够识别被病毒感染的细胞表面上的CD4抗原的受体的辅助T细胞)的丧失是艾滋病发病的根源。在这项研究中,Warner Greene等人识别出静止的淋巴CD4 T细胞在HIV感染过程中被耗尽的机制。利用保持了天然淋巴环境的人淋巴组织的体外培养,本文作者发现,失败的病毒复制触发

Read More

论文摘要 液流电池与传统电池不同之处是,液流电池的电活性成分是以液体形式存在于电池本身之外的,从而使得这种电池能存储数量任意大的能量。因此,液流电池作为调节如风电或太阳能电力等间歇性电力来源的输出的一个潜在手段是具有吸引力的。但是大部分这种电池的一个重要局限性是电活性材料的丰度和成本。为了克服这一局限

Read More

AbstractRapid industrialization and urbanization in developing countries has led to an increase in air pollution, along a similar trajectory to that pr

Read More