Molecular Cell - ERdj5 Is the ER Reductase that Catalyzes the Removal of Non-Native Disulfides and Correct Folding of the LDL Receptor

ERdj5 is a member of the protein disulfide isomerase family of proteins localized to the endoplasmic reticulum (ER) of mammalian cells. To date, only a limited number of substrates for ERdj5 are known. Here we identify a number of endogenous substrates that form mixed disulfides with ERdj5, greatly expanding its client repertoire. ERdj5 previously had been thought to exclusively reduce disulfides in proteins destined for dislocation to the cytosol for degradation. However, we demonstrate here that for one of the identified substrates, the low-density lipoprotein receptor (LDLR), ERdj5 is required not for degradation, but rather for efficient folding. Our results demonstrate that the crucial role of ERdj5 is to reduce non-native disulfides formed during productive folding and that this requirement is dependent on its interaction with BiP. Hence, ERdj5 acts as the ER reductase, both preparing misfolded proteins for degradation and catalyzing the folding of proteins that form obligatory non-native disulfides.

KEYWORDS

SHARE & LIKE

COMMENTS

ABOUT THE AUTHOR

分子-细胞(MOLECULAR CELL)

0 Following 0 Fans 0 Projects 33 Articles

SIMILAR ARTICLES

To warrant the quality of the secretory proteome, stringent control systems operate at the endoplasmic reticulum (ER)-Golgi interface, preventing the r

Read More

ERdj5 is a member of the protein disulfide isomerase family of proteins localized to the endoplasmic reticulum (ER) of mammalian cells. To date, only a

Read More

p53 is a transcription factor that mediates tumor suppressor responses. Correct folding of the p53 protein is essential for these activities, and point

Read More

Conjugation of Met1-linked polyubiquitin (Met1-Ub) by the linear ubiquitin chain assembly complex (LUBAC) is an important regulatory modification in in

Read More

The prevalence of intellectual disability is around 3%; however, the etiology of the disease remains unclear in most cases. We identified a series of p

Read More

The extracellular signal-regulated kinase (ERK)/mitogen-activated protein kinase signal-transduction cascade is one of the key pathways regulating prol

Read More

Cellular transitions are important for all life. Such transitions, including cell fate decisions, often employ positive feedback regulation to establis

Read More

Cellular transitions are important for all life. Such transitions, including cell fate decisions, often employ positive feedback regulation to establis

Read More

Transcriptional pausing, which regulates transcript elongation in both prokaryotes and eukaryotes, is thought to involve formation of alternative RNA p

Read More

The inhibition of transcriptional elongation plays an important role in gene regulation in metazoans, including C. elegans. Here, we combine genomic an

Read More