当代生物(CURRENT BIOLOGY)2013-09-05 2:57 AM

Actin Filament Severing by Cofilin Dismantles Actin Patches and Produces Mother Filaments for New Patches

Background Yeast cells depend on Arp2/3 complex to assemble actin filaments at sites of endocytosis, but the source of the initial filaments required to activate Arp2/3 complex is not known. Results We tested the proposal that cofilin severs actin filaments during endocytosis in fission yeast cells using a mutant cofilin defective in severing. We used quantitative fluorescence microscopy to track mGFP-tagged proteins, including early endocytic adaptor proteins, activators of Arp2/3 complex, and actin filaments. Consistent with the hypothesis, actin patches disassembled far more slowly in cells depending on severing-deficient cofilin than in wild-type cells. Even more interesting, actin patches assembled slowly in these cofilin mutant cells. Adaptor proteins End4p and Pan1p accumulated and persisted at endocytic sites more than ten times longer than in wild-type cells, followed by slow but persistent recruitment of activators of Arp2/3 complex, including WASP and myosin-I. Mutations revealed that actin filament binding sites on adaptor proteins Pan1p and End4p contribute to initiating actin polymerization in actin patches. Conclusions We propose a “sever, diffuse, and trigger” model for the nucleation of actin filaments at sites of endocytosis, whereby cofilin generates actin filament fragments that diffuse through the cytoplasm, bind adaptor proteins at nascent sites of endocytosis, and serve as mother filaments to initiate the autocatalytic assembly of the branched actin filament network of each new patch. This hypothesis explains the source of the “mother filaments” that are absolutely required for Arp2/3 complex to nucleate actin polymerization.

KEYWORDS

SHARE & LIKE

COMMENTS

ABOUT THE AUTHOR

当代生物(CURRENT BIOLOGY)

0 Following 0 Fans 0 Projects 13 Articles

SIMILAR ARTICLES

Background Actin-based cell motility is fundamental for development, function, and malignant events in eukaryotic organisms. During neural development

Read More

Background Dedicated storage organs in the form of tubers are evolutionary novelties that share a common function but originate in diverse species fro

Read More

Background Yeast cells depend on Arp2/3 complex to assemble actin filaments at sites of endocytosis, but the source of the initial filaments required

Read More

Background In the intracellular environment, motor-driven cargo must navigate a dense cytoskeletal network among abundant organelles. Results We i

Read More

Background In preimplantation mouse embryos, the first cell fate specification to the trophectoderm or inner cell mass occurs by the early blastocyst

Read More

Background Branched actin filament networks driving cell motility, endocytosis, and intracellular transport are assembled in seconds by the Arp2/3 com

Read More

Background During cell division, chromosomes must clear the path of the cleavage furrow before the onset of cytokinesis. The abscission checkpoint in

Read More

Background The juxtaposition of newly formed primordia in the root and shoot differs greatly, but their formation in both contexts depends on local ac

Read More

Listeners exploit small interindividual variations around a generic acoustical structure to discriminate and identify individuals from their voice—a ke

Read More

Background The ability to distinguish sensory signals that register unexpected events (exafference) from those generated by voluntary actions (reaffer

Read More