植物细胞(THE PLANT CELL)2013-09-05 2:57 AM

MAP18 Regulates the Direction of Pollen Tube Growth in Arabidopsis by Modulating F-Actin Organization

For fertilization to occur in plants, the pollen tube must be guided to enter the ovule via the micropyle. Previous reports have implicated actin filaments, actin binding proteins, and the tip-focused calcium gradient as key contributors to polar growth of pollen tubes; however, the regulation of directional pollen tube growth is largely unknown. We reported previously that Arabidopsis thaliana MICROTUBULE-ASSOCIATED PROTEIN18 (MAP18) contributes to directional cell growth and cortical microtubule organization. The preferential expression of MAP18 in pollen and in pollen tubes suggests that MAP18 also may function in pollen tube growth. In this study, we demonstrate that MAP18 functions in pollen tubes by influencing actin organization, rather than microtubule assembly. In vitro biochemical results indicate that MAP18 exhibits Ca2+-dependent filamentous (F)-actin-severing activity. Abnormal expression of MAP18 in map18 and MAP18 OX plants was associated with disorganization of the actin cytoskeleton in the tube apex, resulting in aberrant pollen tube growth patterns and morphologies, inaccurate micropyle targeting, and fewer fertilization events. Experiments with MAP18 mutants created by site-directed mutagenesis suggest that F-actin-severing activity is essential to the effects of MAP18 on pollen tube growth direction. Our study demonstrates that in Arabidopsis, MAP18 guides the direction of pollen tube growth by modulating actin filaments.

KEYWORDS

SHARE & LIKE

COMMENTS

ABOUT THE AUTHOR

植物细胞(THE PLANT CELL)

0 Following 1 Fans 0 Projects 47 Articles

SIMILAR ARTICLES

BINDING PROTEIN (BiP) is a major chaperone in the endoplasmic reticulum (ER) lumen, and this study shows that BiP binds to the C-terminal tail of the s

Read More

Vesicle trafficking plays an important role in cell division, establishment of cell polarity, and translation of environmental cues to developmental re

Read More

The genus Brassica includes several important agricultural and horticultural crops. Their current genome structures were shaped by whole-genome triplic

Read More

Trans-acting small interfering RNAs (tasiRNAs) are a major class of small RNAs performing essential biological functions in plants. The first reported

Read More

RK5 is a member of the Arabidopsis thaliana Ca2+/calmodulin-dependent kinase-related kinase family. Here, we show that inactivation of CRK5 inhibits pr

Read More

The waxy plant cuticle protects cells from dehydration, repels pathogen attack, and prevents organ fusion during development. The transcription factor

Read More

Constrained to develop within the seed, the plant embryo must adapt its shape and size to fit the space available. Here, we demonstrate how this adjust

Read More

N-myristoylation is a crucial irreversible eukaryotic lipid modification allowing a key subset of proteins to be targeted at the periphery of specific

Read More

Exocysts are highly conserved octameric complexes that play an essential role in the tethering of Golgi-derived vesicles to target membranes in eukaryo

Read More

Apical actin filaments are crucial for pollen tube tip growth. However, the specific dynamic changes and regulatory mechanisms associated with actin fi

Read More