植物细胞(THE PLANT CELL)2013-09-05 2:57 AM

Interacting Glutamate Receptor-Like Proteins in Phloem Regulate Lateral Root Initiation in Arabidopsis

Molecular, genetic, and electrophysiological evidence indicates that at least one of the plant Glu receptor-like molecules, GLR3.4, functions as an amino acid–gated Ca2+ channel at the plasma membrane. The aspect of plant physiology, growth, or development to which GLR3.4 contributes is an open question. Protein localization studies performed here provide important information. In roots, GLR3.4 and the related GLR3.2 protein were present primarily in the phloem, especially in the vicinity of the sieve plates. GLR3.3 was expressed in most cells of the growing primary root but was not enriched in the phloem, including the sieve plate area. GLR3.2 and GLR3.4 physically interacted with each other better than with themselves as evidenced by a biophotonic assay performed in human embryonic kidney cells and Nicotiana benthamiana leaf cells. GLR3.3 interacted poorly with itself or the other two GLRs. Mutations in GLR3.2, GLR3.4, or GLR3.2 and GLR3.4 caused the same and equally severe phenotype, namely, a large overproduction and aberrant placement of lateral root primordia. Loss of GLR3.3 did not affect lateral root primordia. These results support the hypothesis that apoplastic amino acids acting through heteromeric GLR3.2/GLR3.4 channels affect lateral root development via Ca2+ signaling in the phloem.

KEYWORDS

SHARE & LIKE

COMMENTS

ABOUT THE AUTHOR

植物细胞(THE PLANT CELL)

0 Following 1 Fans 0 Projects 47 Articles

SIMILAR ARTICLES

BINDING PROTEIN (BiP) is a major chaperone in the endoplasmic reticulum (ER) lumen, and this study shows that BiP binds to the C-terminal tail of the s

Read More

Vesicle trafficking plays an important role in cell division, establishment of cell polarity, and translation of environmental cues to developmental re

Read More

The genus Brassica includes several important agricultural and horticultural crops. Their current genome structures were shaped by whole-genome triplic

Read More

Trans-acting small interfering RNAs (tasiRNAs) are a major class of small RNAs performing essential biological functions in plants. The first reported

Read More

RK5 is a member of the Arabidopsis thaliana Ca2+/calmodulin-dependent kinase-related kinase family. Here, we show that inactivation of CRK5 inhibits pr

Read More

The waxy plant cuticle protects cells from dehydration, repels pathogen attack, and prevents organ fusion during development. The transcription factor

Read More

Constrained to develop within the seed, the plant embryo must adapt its shape and size to fit the space available. Here, we demonstrate how this adjust

Read More

N-myristoylation is a crucial irreversible eukaryotic lipid modification allowing a key subset of proteins to be targeted at the periphery of specific

Read More

Exocysts are highly conserved octameric complexes that play an essential role in the tethering of Golgi-derived vesicles to target membranes in eukaryo

Read More

Apical actin filaments are crucial for pollen tube tip growth. However, the specific dynamic changes and regulatory mechanisms associated with actin fi

Read More