生态学专著2013-09-05 2:58 AM

Variable cost of prey defense and coevolution in predator–prey systems

Predation acts as a selective pressure, driving prey adaptation. Predators can also evolve counter-defenses to increase the likelihood of successful attack. Investment in either trait can be costly, leading to a trade-off between the traits and other fitness components. Costs for defense have been shown experimentally to depend on environmental factors such as resource availability. This suggests that costs can increase with population size, rather than remaining constant as models often assume. Using a quantitative trait model with predator–prey coevolution, we investigate how both population and trait dynamics are affected by density-dependent prey defense cost (“variable cost”) vs. density-independent cost (“fixed cost”). We assume predator counter-defense cost is always density independent. We also investigate the effect of relative speeds of prey and predator evolution on population and trait dynamics, by varying a parameter that determines each population's additive genetic variance. For both models, increasing the speed of predator evolution always has a stabilizing effect on the dynamics, while increasing the speed of prey evolution (within a biologically reasonable range) is largely destabilizing. Within the plausible range of prey evolution speed, variable cost of prey defense is more stabilizing than fixed cost. Our results suggest that density-dependent costs of defense can have important effects on predator–prey dynamics, even when evolution is relatively slow. Our results might also help to explain why many real populations do not display predator–prey cycles.

KEYWORDS

SHARE & LIKE

COMMENTS

ABOUT THE AUTHOR

生态学专著

0 Following 0 Fans 0 Projects 32 Articles

SIMILAR ARTICLES

In long-lived N-fixing plants, environmental conditions affecting plant growth and N demand vary at multiple temporal and spatial scales, and symbiont

Read More

In long-lived N-fixing plants, environmental conditions affecting plant growth and N demand vary at multiple temporal and spatial scales, and symbiont

Read More

Elemental cycles are coupled directly and indirectly to ecosystem metabolism at multiple time scales. Understanding coupling in lotic ecosystems has re

Read More

Elemental cycles are coupled directly and indirectly to ecosystem metabolism at multiple time scales. Understanding coupling in lotic ecosystems has re

Read More

Increasing grazing pressure and climate change affect nitrogen (N) dynamics of grassland ecosystems in the Eurasian steppe belt with unclear consequenc

Read More

Increasing grazing pressure and climate change affect nitrogen (N) dynamics of grassland ecosystems in the Eurasian steppe belt with unclear consequenc

Read More

Stem exclusion and understory reinitiation are commonly described, but poorly understood, stages of forest development. It is assumed that overstory tr

Read More

Stem exclusion and understory reinitiation are commonly described, but poorly understood, stages of forest development. It is assumed that overstory tr

Read More

Population viability analysis (PVA) has become a basic tool of current conservation practice. However, if not accounted for properly, the uncertainties

Read More

Population viability analysis (PVA) has become a basic tool of current conservation practice. However, if not accounted for properly, the uncertainties

Read More