生态学专著2013-09-05 2:58 AM

Comprehensive evaluation of model uncertainty in qualitative network analyses

Qualitative network analyses provide a broad range of advantages for formulating ideas and testing understanding of ecosystem function, for exploring feedback dynamics, and for making qualitative predictions in cases where data are limited. They have been applied to a wide range of ecological questions, including exploration of the implications of uncertainty about fundamental system structure. However, we argue that questions regarding model uncertainty in qualitative network analyses have been under-explored, and that there is a need for a coherent framework for evaluating uncertainty. To address this issue, we have developed a Bayesian framework for interpreting uncertainty that can be applied when comparing and evaluating the characteristics and behavior of alternative model formulations. Specifically, we recognize that results from previously developed simulation approaches to qualitative modeling can be interpreted as marginal likelihoods that translate to Bayes factors for model comparison. We then test and extend our Bayesian interpretation of qualitative model results to address comparisons both between and within alternative models. With the use of examples, we demonstrate how our Bayesian framework for interpretation can improve the application of qualitative modeling for addressing uncertainty about the structure and function of ecological networks.

KEYWORDS

SHARE & LIKE

COMMENTS

ABOUT THE AUTHOR

生态学专著

0 Following 0 Fans 0 Projects 32 Articles

SIMILAR ARTICLES

In long-lived N-fixing plants, environmental conditions affecting plant growth and N demand vary at multiple temporal and spatial scales, and symbiont

Read More

In long-lived N-fixing plants, environmental conditions affecting plant growth and N demand vary at multiple temporal and spatial scales, and symbiont

Read More

Elemental cycles are coupled directly and indirectly to ecosystem metabolism at multiple time scales. Understanding coupling in lotic ecosystems has re

Read More

Elemental cycles are coupled directly and indirectly to ecosystem metabolism at multiple time scales. Understanding coupling in lotic ecosystems has re

Read More

Increasing grazing pressure and climate change affect nitrogen (N) dynamics of grassland ecosystems in the Eurasian steppe belt with unclear consequenc

Read More

Increasing grazing pressure and climate change affect nitrogen (N) dynamics of grassland ecosystems in the Eurasian steppe belt with unclear consequenc

Read More

Stem exclusion and understory reinitiation are commonly described, but poorly understood, stages of forest development. It is assumed that overstory tr

Read More

Stem exclusion and understory reinitiation are commonly described, but poorly understood, stages of forest development. It is assumed that overstory tr

Read More

Population viability analysis (PVA) has become a basic tool of current conservation practice. However, if not accounted for properly, the uncertainties

Read More

Population viability analysis (PVA) has become a basic tool of current conservation practice. However, if not accounted for properly, the uncertainties

Read More