发育-细胞2013-09-05 2:58 AM

Developmental Cell - Competitive Interactions Eliminate Unfit Embryonic Stem Cells at the Onset of Differentiation

A fundamental question in developmental biology is whether there are mechanisms to detect stem cells with mutations that, although not adversely affecting viability, would compromise their ability to contribute to further development. Here, we show that cell competition is a mechanism regulating the fitness of embryonic stem cells (ESCs). We find that ESCs displaying defective bone morphogenetic protein signaling or defective autophagy or that are tetraploid are eliminated at the onset of differentiation by wild-type cells. This elimination occurs in an apoptosis-dependent manner and is mediated by secreted factors. Furthermore, during this process, we find that establishment of differential c-Myc levels is critical and that c-Myc overexpression is sufficient to induce competitive behavior in ESCs. Cell competition is, therefore, a process that allows recognition and elimination of defective cells during the early stages of development and is likely to play important roles in tissue homeostasis and stem cell maintenance.

KEYWORDS

SHARE & LIKE

COMMENTS

ABOUT THE AUTHOR

发育-细胞

0 Following 0 Fans 0 Projects 65 Articles

SIMILAR ARTICLES

Centrioles are essential for forming cilia, flagella, and centrosomes and are thus critical for a range of fundamental cellular processes. Despite thei

Read More

Centrioles are essential for forming cilia, flagella, and centrosomes and are thus critical for a range of fundamental cellular processes. Despite thei

Read More

Little is known about the active positioning of transcripts outside of embryogenesis or highly polarized cells. We show here that a specific G1 cyclin

Read More

Little is known about the active positioning of transcripts outside of embryogenesis or highly polarized cells. We show here that a specific G1 cyclin

Read More

Centrosome amplification is a hallmark of human tumours. In flies, extra centrosomes cause spindle position defects that result in the expansion of the

Read More

Centrosome amplification is a hallmark of human tumours. In flies, extra centrosomes cause spindle position defects that result in the expansion of the

Read More

Autophagy is the primary cellular catabolic program activated in response to nutrient starvation. Initiation of autophagy, particularly by amino-acid w

Read More

Autophagy is the primary cellular catabolic program activated in response to nutrient starvation. Initiation of autophagy, particularly by amino-acid w

Read More

The molecular requirements and morphology of migrating cells can vary depending on matrix geometry; therefore, predicting the optimal migration strateg

Read More

The molecular requirements and morphology of migrating cells can vary depending on matrix geometry; therefore, predicting the optimal migration strateg

Read More