动物生态学专著2013-09-05 2:58 AM

Understanding scales of movement: animals ride waves and ripples of environmental change - Moorter - 2013 - Journal of Animal Ecology - Wiley Online Library

Summary Animal movements are the primary behavioural adaptation to spatiotemporal heterogeneity in resource availability. Depending on their spatiotemporal scale, movements have been categorized into distinct functional groups (e.g. foraging movements, dispersal, migration), and have been studied using different methodologies. We suggest striving towards the development of a coherent framework based on the ultimate function of all movement types, which is to increase individual fitness through an optimal exploitation of resources varying in space and time. We developed a novel approach to simultaneously study movements at different spatiotemporal scales based on the following proposed theory: the length and frequency of animal movements are determined by the interaction between temporal autocorrelation in resource availability and spatial autocorrelation in changes in resource availability. We hypothesized that for each time interval the spatiotemporal scales of moose Alces alces movements correspond to the spatiotemporal scales of variation in the gains derived from resource exploitation when taking into account the costs of movements (represented by their proxies, forage availability NDVI and snow depth respectively). The scales of change in NDVI and snow were quantified using wave theory, and were related to the scale of moose movement using linear mixed models. In support of the proposed theory we found that frequent, smaller scale movements were triggered by fast, small-scale ripples of changes, whereas infrequent, larger scale movements matched slow, large-scale waves of change in resource availability. Similarly, moose inhabiting ranges characterized by larger scale waves of change in the onset of spring migrated longer distances. We showed that the scales of movements are driven by the scales of changes in the net profitability of trophic resources. Our approach can be extended to include drivers of movements other than trophic resources (e.g. population density, density of related individuals, predation risk) and may facilitate the assessment of the impact of environmental changes on community dynamics and conservation.

KEYWORDS

SHARE & LIKE

COMMENTS

ABOUT THE AUTHOR

动物生态学专著

0 Following 0 Fans 0 Projects 36 Articles

SIMILAR ARTICLES

Theory suggests that predators in detritus-based food webs should negatively influence plants, through direct effects on plant-facilitating detritivore

Read More

Theory suggests that predators in detritus-based food webs should negatively influence plants, through direct effects on plant-facilitating detritivore

Read More

Summary The optimal foraging theory, the nutrient balance hypothesis, and the plant association theories predict that foraging decisions and resulting

Read More

Summary The optimal foraging theory, the nutrient balance hypothesis, and the plant association theories predict that foraging decisions and resulting

Read More

Summary Migration and re-colonization enable organisms to persist in metapopulations. Re-colonization success may be limited by the number of arriving

Read More

Summary Migration and re-colonization enable organisms to persist in metapopulations. Re-colonization success may be limited by the number of arriving

Read More

Summary The loss of species diversity due to habitat fragmentation has been extensively studied. In contrast, the impacts of habitat fragmentation on

Read More

Summary The loss of species diversity due to habitat fragmentation has been extensively studied. In contrast, the impacts of habitat fragmentation on

Read More

Summary Investigating migratory connectivity between breeding and foraging areas is critical to effective management and conservation of highly mobile

Read More

Summary Investigating migratory connectivity between breeding and foraging areas is critical to effective management and conservation of highly mobile

Read More