化学研究报告2013-09-05 2:58 AM

Capacitive Energy Storage in Nanostructured Carbon–Electrolyte Systems - Accounts of Chemical Research (ACS Publications)

Securing our energy future is the most important problem that humanity faces in this century. Burning fossil fuels is not sustainable, and wide use of renewable energy sources will require a drastically increased ability to store electrical energy. In the move toward an electrical economy, chemical (batteries) and capacitive energy storage (electrochemical capacitors or supercapacitors) devices are expected to play an important role. This Account summarizes research in the field of electrochemical capacitors conducted over the past decade. Overall, the combination of the right electrode materials with a proper electrolyte can successfully increase both the energy stored by the device and its power, but no perfect active material exists and no electrolyte suits every material and every performance goal. However, today, many materials are available, including porous activated, carbide-derived, and templated carbons with high surface areas and porosities that range from subnanometer to just a few nanometers. If the pore size is matched with the electrolyte ion size, those materials can provide high energy density. Exohedral nanoparticles, such as carbon nanotubes and onion-like carbon, can provide high power due to fast ion sorption/desorption on their outer surfaces. Because of its higher charge–discharge rates compared with activated carbons, graphene has attracted increasing attention, but graphene had not yet shown a higher volumetric capacitance than porous carbons. Although aqueous electrolytes, such as sodium sulfate, are the safest and least expensive, they have a limited voltage window. Organic electrolytes, such as solutions of [N(C2H5)4]BF4 in acetonitrile or propylene carbonate, are the most common in commercial devices. Researchers are increasingly interested in nonflammable ionic liquids. These liquids have low vapor pressures, which allow them to be used safely over a temperature range from −50 °C to at least 100 °C and over a larger voltage window, which results in a higher energy density than other electrolytes. In situ characterization techniques, such as nuclear magnetic resonance (NMR), small-angle X-ray scattering (SAXS) and small-angle neutron scattering (SANS), and electrochemical quartz crystal microbalance (EQCM) have improved our understanding of the electrical double layer in confinement and desolvation of ions in narrow pores. Atomisitic and continuum modeling have verified and guided these experimental studies. The further development of materials and better understanding of charged solid-electrolyte interfaces should lead to wider use of capacitive energy storage at scales ranging from microelectronics to transportation and the electrical grid. Even with the many exciting results obtained using newer materials, such as graphene and nanotubes, the promising properties reported for new electrode materials do not directly extrapolate to improved device performance. Although thin films of nanoparticles may show a very high gravimetric power density and discharge rate, those characteristics will not scale up linearly with the thickness of the electrode.

KEYWORDS

SHARE & LIKE

COMMENTS

ABOUT THE AUTHOR

化学研究报告

0 Following 0 Fans 0 Projects 69 Articles

SIMILAR ARTICLES

Going in vivo, including living cells and the whole body, is very important for gaining a better understanding of the mystery of life and requires spec

Read More

Polytheonamide B (1), isolated from the marine sponge Theonella swinhoei, is a posttranslationally modified ribosomal peptide (MW 5030 Da) that display

Read More

Singlet fission (SF) is a spin-allowed process in which an excited singlet state spontaneously splits into a pair of triplet excitons. This relaxation

Read More

Singlet exciton fission is the process in conjugated organic molecules bywhich a photogenerated singlet exciton couples to a nearby chromophore in the

Read More

Uridine(5′)diphospho(1)α-d-galactose (UDP-gal) provides all galactosyl units in biologically synthesized carbohydrates. All healthy cells produce UDP-g

Read More

The coupling of aryl halides with catalytically activated aryl C–H bondsprovides a desirable and atom-economical alternative to standard cross-coupling

Read More

Acenes are a class of aromatic hydrocarbons composed of linearly fused benzene rings. Noteworthy features of these molecules include their extended fla

Read More

Securing our energy future is the most important problem that humanity faces in this century. Burning fossil fuels is not sustainable, and wide use of

Read More

Certain organic materials can generate more than one electron-hole pair per absorbed photon, a property that could revolutionize the prospects for sola

Read More

Certain organic materials can generate more than one electron-hole pair per absorbed photon, a property that could revolutionize the prospects for sola

Read More