化学研究报告2013-09-05 2:58 AM

Roles of Surface Chemistry on Safety and Electrochemistry in Lithium Ion Batteries - Accounts of Chemical Research (ACS Publications)

Motivated by new applications including electric vehicles and the smart grid, interest in advanced lithium ion batteries has increased significantly over the past decade. Therefore, research in this field has intensified to produce safer devices with better electrochemical performance. Most research has focused on the development of new electrode materials through the optimization of bulk properties such as crystal structure, ionic diffusivity, and electric conductivity. More recently, researchers have also considered the surface properties of electrodes as critical factors for optimizing performance. In particular, the electrolyte decomposition at the electrode surface relates to both a lithium ion battery’s electrochemical performance and safety. In this Account, we give an overview of the major developments in the area of surface chemistry for lithium ion batteries. These ideas will provide the basis for the design of advanced electrode materials. Initially, we present a brief background to lithium ion batteries such as major chemical components and reactions that occur in lithium ion batteries. Then, we highlight the role of surface chemistry in the safety of lithium ion batteries. We examine the thermal stability of cathode materials: For example, we discuss the oxygen generation from cathode materials and describe how cells can swell and heat up in response to specific conditions. We also demonstrate how coating the surfaces of electrodes can improve safety. The surface chemistry can also affect the electrochemistry of lithium ion batteries. The surface coating strategy improved the energy density and cycle performance for layered LiCoO2, xLi2MnO3·(1 – x)LiMO2 (M = Mn, Ni, Co, and their combinations), and LiMn2O4 spinel materials, and we describe a working mechanism for these enhancements. Although coating the surfaces of cathodes with inorganic materials such as metal oxides and phosphates improves the electrochemical performance and safety properties of batteries, the microstructure of the coating layers and the mechanism of action are not fully understood. Therefore, researchers will need to further investigate the surface coating strategy during the development of new lithium ion batteries.

KEYWORDS

SHARE & LIKE

COMMENTS

ABOUT THE AUTHOR

化学研究报告

0 Following 0 Fans 0 Projects 69 Articles

SIMILAR ARTICLES

Going in vivo, including living cells and the whole body, is very important for gaining a better understanding of the mystery of life and requires spec

Read More

Polytheonamide B (1), isolated from the marine sponge Theonella swinhoei, is a posttranslationally modified ribosomal peptide (MW 5030 Da) that display

Read More

Singlet fission (SF) is a spin-allowed process in which an excited singlet state spontaneously splits into a pair of triplet excitons. This relaxation

Read More

Singlet exciton fission is the process in conjugated organic molecules bywhich a photogenerated singlet exciton couples to a nearby chromophore in the

Read More

Uridine(5′)diphospho(1)α-d-galactose (UDP-gal) provides all galactosyl units in biologically synthesized carbohydrates. All healthy cells produce UDP-g

Read More

The coupling of aryl halides with catalytically activated aryl C–H bondsprovides a desirable and atom-economical alternative to standard cross-coupling

Read More

Acenes are a class of aromatic hydrocarbons composed of linearly fused benzene rings. Noteworthy features of these molecules include their extended fla

Read More

Securing our energy future is the most important problem that humanity faces in this century. Burning fossil fuels is not sustainable, and wide use of

Read More

Certain organic materials can generate more than one electron-hole pair per absorbed photon, a property that could revolutionize the prospects for sola

Read More

Certain organic materials can generate more than one electron-hole pair per absorbed photon, a property that could revolutionize the prospects for sola

Read More