化学研究报告2013-09-05 2:58 AM

Engineering Interface and Surface of Noble Metal Nanoparticle Nanotubes toward Enhanced Catalytic Activity for Fuel Cell Applications - Accounts of Chemical Research (ACS Publications)

In order for fuel cells to have commercial viability as alternative fuel sources, researchers need to develop highly active and robust fuel cell electrocatalysts. In recent years, the focus has been on the design and synthesis of novel catalytic materials with controlled interface and surface structures. Another goal is to uncover potential catalytic activity and selectivity, as well as understand their fundamental catalytic mechanisms. Scientists have achieved great progress in the experimental and theoretical investigation due to the urgent demand for broad commercialization of fuel cells in automotive applications. However, there are still three main problems: cost, performance, and stability. To meet these targets, the catalyst needs to have multisynergic functions. In addition, the composition and structure changes of the catalysts during the reactions still need to be explored. Activity in catalytic nanomaterials is generally controlled by the size, shape, composition, and interface and surface engineering. As such, one-dimensional nanostructures such as nanowires and nanotubes are of special interest. However, these structures tend to lose the nanoparticle morphology and inhibit the use of catalysts in both fuel cell anodes and cathodes. In 2003, Rubinstein and co-workers proposed the idea of nanoparticle nanotubes (NNs), which combine the geometry of nanotubes and the morphology of nanoparticles. This concept gives both the high surface-to-volume ratio and the size effect, which are both appealing in electrocatalyst design. In this Account, we describe our developments in the construction of highly active NNs with unique surface and heterogeneous interface structures. We try to clarify enhanced activity and stability in catalytic systems by taking into account the activity impact factors. We briefly introduce material structural effects on the electrocatalytic reactivity including metal oxide/metal and metal/metal interfaces, dealloyed pure Pt, and mixed Pt/Pd surfaces. In addition, we discuss the geometric structure and surface composition changes and evolutions on the activity, selectivity, and stability under fuel cell operation conditions. We expect that these nanostructured materials with particular nanostructured characteristics, physical and chemical properties, and remarkable structure changes will offer new opportunities for wide scientific communities.

KEYWORDS

SHARE & LIKE

COMMENTS

ABOUT THE AUTHOR

化学研究报告

0 Following 0 Fans 0 Projects 69 Articles

SIMILAR ARTICLES

Going in vivo, including living cells and the whole body, is very important for gaining a better understanding of the mystery of life and requires spec

Read More

Polytheonamide B (1), isolated from the marine sponge Theonella swinhoei, is a posttranslationally modified ribosomal peptide (MW 5030 Da) that display

Read More

Singlet fission (SF) is a spin-allowed process in which an excited singlet state spontaneously splits into a pair of triplet excitons. This relaxation

Read More

Singlet exciton fission is the process in conjugated organic molecules bywhich a photogenerated singlet exciton couples to a nearby chromophore in the

Read More

Uridine(5′)diphospho(1)α-d-galactose (UDP-gal) provides all galactosyl units in biologically synthesized carbohydrates. All healthy cells produce UDP-g

Read More

The coupling of aryl halides with catalytically activated aryl C–H bondsprovides a desirable and atom-economical alternative to standard cross-coupling

Read More

Acenes are a class of aromatic hydrocarbons composed of linearly fused benzene rings. Noteworthy features of these molecules include their extended fla

Read More

Securing our energy future is the most important problem that humanity faces in this century. Burning fossil fuels is not sustainable, and wide use of

Read More

Certain organic materials can generate more than one electron-hole pair per absorbed photon, a property that could revolutionize the prospects for sola

Read More

Certain organic materials can generate more than one electron-hole pair per absorbed photon, a property that could revolutionize the prospects for sola

Read More