神经科学-自然2013-09-05 2:58 AM

Rett syndrome mutations abolish the interaction of MeCP2 with the NCoR/SMRT co-repressor : Nature Neuroscience : Nature Publishing Group

Rett syndrome (RTT) is a severe neurological disorder that is caused by mutations in the MECP2 gene. Many missense mutations causing RTT are clustered in the DNA-binding domain of MeCP2, suggesting that association with chromatin is critical for its function. We identified a second mutational cluster in a previously uncharacterized region of MeCP2. We found that RTT mutations in this region abolished the interaction between MeCP2 and the NCoR/SMRT co-repressor complexes. Mice bearing a common missense RTT mutation in this domain exhibited severe RTT-like phenotypes. Our data are compatible with the hypothesis that brain dysfunction in RTT is caused by a loss of the MeCP2 'bridge' between the NCoR/SMRT co-repressors and chromatin.

KEYWORDS

SHARE & LIKE

COMMENTS

ABOUT THE AUTHOR

神经科学-自然

0 Following 1 Fans 0 Projects 88 Articles

SIMILAR ARTICLES

Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease whose causes are still poorly understood. To identify additional genetic

Read More

Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease whose causes are still poorly understood. To identify additional genetic

Read More

Large excitatory synapses with multiple active zones ensure reliable and fast information transfer at specific points in neuronal circuits. However, th

Read More

Large excitatory synapses with multiple active zones ensure reliable and fast information transfer at specific points in neuronal circuits. However, th

Read More

Reverse signaling via members of the tumor necrosis factor (TNF) superfamily controls multiple aspects of immune function. Here we document TNFα revers

Read More

Reverse signaling via members of the tumor necrosis factor (TNF) superfamily controls multiple aspects of immune function. Here we document TNFα revers

Read More

The activity-regulated cytoskeletal protein Arc (also known as Arg3.1) is required for long-term memory formation and synaptic plasticity. Arc expressi

Read More

The activity-regulated cytoskeletal protein Arc (also known as Arg3.1) is required for long-term memory formation and synaptic plasticity. Arc expressi

Read More

The vertebrate brain is anatomically and functionally asymmetric. The left and right cerebral hemispheres harbor neural stem cell niches at the ventric

Read More

The vertebrate brain is anatomically and functionally asymmetric. The left and right cerebral hemispheres harbor neural stem cell niches at the ventric

Read More