神经科学-自然2013-09-05 2:58 AM

Robust timing and motor patterns by taming chaos in recurrent neural networks : Nature Neuroscience : Nature Publishing Group

The brain's ability to tell time and produce complex spatiotemporal motor patterns is critical for anticipating the next ring of a telephone or playing a musical instrument. One class of models proposes that these abilities emerge from dynamically changing patterns of neural activity generated in recurrent neural networks. However, the relevant dynamic regimes of recurrent networks are highly sensitive to noise; that is, chaotic. We developed a firing rate model that tells time on the order of seconds and generates complex spatiotemporal patterns in the presence of high levels of noise. This is achieved through the tuning of the recurrent connections. The network operates in a dynamic regime that exhibits coexisting chaotic and locally stable trajectories. These stable patterns function as 'dynamic attractors' and provide a feature that is characteristic of biological systems: the ability to 'return' to the pattern being generated in the face of perturbations.

KEYWORDS

SHARE & LIKE

COMMENTS

ABOUT THE AUTHOR

神经科学-自然

0 Following 1 Fans 0 Projects 88 Articles

SIMILAR ARTICLES

Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease whose causes are still poorly understood. To identify additional genetic

Read More

Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease whose causes are still poorly understood. To identify additional genetic

Read More

Large excitatory synapses with multiple active zones ensure reliable and fast information transfer at specific points in neuronal circuits. However, th

Read More

Large excitatory synapses with multiple active zones ensure reliable and fast information transfer at specific points in neuronal circuits. However, th

Read More

Reverse signaling via members of the tumor necrosis factor (TNF) superfamily controls multiple aspects of immune function. Here we document TNFα revers

Read More

Reverse signaling via members of the tumor necrosis factor (TNF) superfamily controls multiple aspects of immune function. Here we document TNFα revers

Read More

The activity-regulated cytoskeletal protein Arc (also known as Arg3.1) is required for long-term memory formation and synaptic plasticity. Arc expressi

Read More

The activity-regulated cytoskeletal protein Arc (also known as Arg3.1) is required for long-term memory formation and synaptic plasticity. Arc expressi

Read More

The vertebrate brain is anatomically and functionally asymmetric. The left and right cerebral hemispheres harbor neural stem cell niches at the ventric

Read More

The vertebrate brain is anatomically and functionally asymmetric. The left and right cerebral hemispheres harbor neural stem cell niches at the ventric

Read More