神经科学-自然2013-09-05 2:58 AM

The neuron-specific chromatin regulatory subunit BAF53b is necessary for synaptic plasticity and memory : Nature Neuroscience : Nature Publishing Group

Recent exome sequencing studies have implicated polymorphic Brg1-Associated Factor (BAF) complexes (mammalian SWI/SNF chromatin remodeling complexes) in several human intellectual disabilities and cognitive disorders. However, it is currently unknown how mutations in BAF complexes result in impaired cognitive function. Postmitotic neurons express a neuron-specific assembly, nBAF, characterized by the neuron-specific subunit BAF53b. Mice harboring selective genetic manipulations of BAF53b have severe defects in long-term memory and long-lasting forms of hippocampal synaptic plasticity. We rescued memory impairments in BAF53b mutant mice by reintroducing BAF53b in the adult hippocampus, which suggests a role for BAF53b beyond neuronal development. The defects in BAF53b mutant mice appeared to derive from alterations in gene expression that produce abnormal postsynaptic components, such as spine structure and function, and ultimately lead to deficits in synaptic plasticity. Our results provide new insight into the role of dominant mutations in subunits of BAF complexes in human intellectual and cognitive disorders.

KEYWORDS

SHARE & LIKE

COMMENTS

ABOUT THE AUTHOR

神经科学-自然

0 Following 1 Fans 0 Projects 88 Articles

SIMILAR ARTICLES

Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease whose causes are still poorly understood. To identify additional genetic

Read More

Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease whose causes are still poorly understood. To identify additional genetic

Read More

Large excitatory synapses with multiple active zones ensure reliable and fast information transfer at specific points in neuronal circuits. However, th

Read More

Large excitatory synapses with multiple active zones ensure reliable and fast information transfer at specific points in neuronal circuits. However, th

Read More

Reverse signaling via members of the tumor necrosis factor (TNF) superfamily controls multiple aspects of immune function. Here we document TNFα revers

Read More

Reverse signaling via members of the tumor necrosis factor (TNF) superfamily controls multiple aspects of immune function. Here we document TNFα revers

Read More

The activity-regulated cytoskeletal protein Arc (also known as Arg3.1) is required for long-term memory formation and synaptic plasticity. Arc expressi

Read More

The activity-regulated cytoskeletal protein Arc (also known as Arg3.1) is required for long-term memory formation and synaptic plasticity. Arc expressi

Read More

The vertebrate brain is anatomically and functionally asymmetric. The left and right cerebral hemispheres harbor neural stem cell niches at the ventric

Read More

The vertebrate brain is anatomically and functionally asymmetric. The left and right cerebral hemispheres harbor neural stem cell niches at the ventric

Read More