神经科学-自然2013-09-05 2:58 AM

Spike bursts increase amyloid-[beta] 40/42 ratio by inducing a presenilin-1 conformational change

Accumulated genetic evidence suggests that attenuation of the ratio between cerebral amyloid-β Aβ40 and Aβ42 isoforms is central to familial Alzheimer's disease (FAD) pathogenesis. However, FAD mutations account for only 1–2% of Alzheimer's disease cases, leaving the experience-dependent mechanisms regulating Aβ40/42 an enigma. Here we explored regulation of Aβ40/42 ratio by temporal spiking patterns in the rodent hippocampus. Spike bursts boosted Aβ40/42 through a conformational change in presenilin1 (PS1), the catalytic subunit of γ-secretase, and subsequent increase in Aβ40 production. Conversely, single spikes did not alter basal PS1 conformation and Aβ40/42. Burst-induced PS1 conformational shift was mediated by means of Ca2+-dependent synaptic vesicle exocytosis. Presynaptic inhibition in vitro and visual deprivation in vivo augmented synaptic and Aβ40/42 facilitation by bursts in the hippocampus. Thus, burst probability and transfer properties of synapses represent fundamental features regulating Aβ40/42 by experience and may contribute to the initiation of the common, sporadic Alzheimer's disease.

KEYWORDS

SHARE & LIKE

COMMENTS

ABOUT THE AUTHOR

神经科学-自然

0 Following 1 Fans 0 Projects 88 Articles

SIMILAR ARTICLES

Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease whose causes are still poorly understood. To identify additional genetic

Read More

Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease whose causes are still poorly understood. To identify additional genetic

Read More

Large excitatory synapses with multiple active zones ensure reliable and fast information transfer at specific points in neuronal circuits. However, th

Read More

Large excitatory synapses with multiple active zones ensure reliable and fast information transfer at specific points in neuronal circuits. However, th

Read More

Reverse signaling via members of the tumor necrosis factor (TNF) superfamily controls multiple aspects of immune function. Here we document TNFα revers

Read More

Reverse signaling via members of the tumor necrosis factor (TNF) superfamily controls multiple aspects of immune function. Here we document TNFα revers

Read More

The activity-regulated cytoskeletal protein Arc (also known as Arg3.1) is required for long-term memory formation and synaptic plasticity. Arc expressi

Read More

The activity-regulated cytoskeletal protein Arc (also known as Arg3.1) is required for long-term memory formation and synaptic plasticity. Arc expressi

Read More

The vertebrate brain is anatomically and functionally asymmetric. The left and right cerebral hemispheres harbor neural stem cell niches at the ventric

Read More

The vertebrate brain is anatomically and functionally asymmetric. The left and right cerebral hemispheres harbor neural stem cell niches at the ventric

Read More