Science2014-06-12 4:27 PM

海洋细菌性膜囊泡能够影响全球碳循环 Bacterial Vesicles in Marine Ecosystems

论文摘要 

原绿球藻——这是海洋中最丰富的蓝细菌——一直在散布大量的含有蛋白质、DNA和RNA的菌“芽”。

Steven Biller及其同事说,这些细菌性膜囊泡可能会对全世界的碳预算产生显著的影响。研究人员对在实验室中生长的原绿球藻的囊泡脱落进行了观察并检测了马萨诸塞州葡萄园海峡(Vineyard Sound)海域及中大西洋马尾藻海的海水中的囊泡的丰度。

他们的数据显示,这种细菌每天所脱落的囊泡有近兆兆之多。这些满载营养的包袱能够支持显著的细菌增长,并因此能够对全球的碳循环造成影响。它们还能作为在海洋生物体间横向基因转移的一种方式,并甚至能作为细菌为了迷惑病毒而抛弃的“诱饵”。David Scanlan对这些不同的作用进行了讨论。

Abstract 

Many heterotrophic bacteria are known to release extracellular vesicles, facilitating interactions between cells and their environment from a distance. Vesicle production has not been described in photoautotrophs, however, and the prevalence and characteristics of vesicles in natural ecosystems is unknown. Here, we report that cultures of Prochlorococcus, a numerically dominant marine cyanobacterium, continuously release lipid vesicles containing proteins, DNA, and RNA. We also show that vesicles carrying DNA from diverse bacteria are abundant in coastal and open-ocean seawater samples. Prochlorococcus vesicles can support the growth of heterotrophic bacterial cultures, which implicates these structures in marine carbon flux. The ability of vesicles to deliver diverse compounds in discrete packages adds another layer of complexity to the flow of information, energy, and biomolecules in marine microbial communities.

Carbon Budding in the Ocean

Bacterial vesicles are gaining increasing attention for their roles in pathogenesis, but the abundance of these structures and their ecological roles in nonpathogenic contexts have received little notice. Biller et al. (p. 183; see the Perspective by Scanlan) provide evidence that membrane vesicles ∼100 nm in diameter are released by marine cyanobacteria and are a major feature of marine ecosystems. Studies of cultures of Prochlorococcus—the most abundant photoautotroph in the oligotrophic oceans—show that vesicles are continually released by this cyanobacterium and are abundant in the marine environment. These vesicles have properties that change the way we think about genetic and biogeochemical exchange among plankton and the dissolved organic carbon pool in marine ecosystems.

KEYWORDS

SHARE & LIKE

COMMENTS

ABOUT THE AUTHOR

Science

Science Magazine

0 Following 18 Fans 0 Projects 236 Articles

SIMILAR ARTICLES

AbstractThe conservation of sleep across all animal species suggests that sleep serves a vital function. We here report that sleep has a critical funct

Read More

Introduction Recent decades have seen a major international effort to inventory tree communities in the Amazon Basin and Guiana Shield (Amazonia), but

Read More

IntroductionInitiation of protein synthesis is a key step in the control of gene expression. In eukaryotes, initiation is a highly complex process that

Read More

Abstract For decades, social psychological theories have posited that the automatic processes captured by implicit measures have implications for soci

Read More

论文摘要动物界最复杂的眼睛可以在物种口足类甲壳动物(濑尿虾)中找到,其中一些有12种不同类型的光感受器,每种各取样较窄的一组波长,范围包含了深紫外光到远红光(300到720纳米)。在功能上,这种彩色复杂性被视作是谜。当3种或4种色彩通道对色彩辨认来说已经足够时,为何要使用12种色彩通道?对口足类动物行

Read More

论文摘要 首先,在一篇“评论”文章中,Thomas Piketty 和 Emmanuel Saez用“世界顶级收入数据库(WTID)”来比较这两个数值多年来是如何在欧洲和美国演变的;WTID包括了一个世纪之久的有关全球收入的数据以及2个世纪之久的有关个人财富的数据。据研究人员披露,在20世纪之交的时候

Read More

IntroductionCensorship has a long history in China, extending from the efforts of Emperor Qin to burn Confucian texts in the third century BCE to the c

Read More

Many animals, on air, water, or land, navigate in three-dimensional (3D) environments, yet it remains unclear how brain circuits encode the animal's 3D

Read More

Many animals, on air, water, or land, navigate in three-dimensional (3D) environments, yet it remains unclear how brain circuits encode the animal's 3D

Read More

Like mammalian neurons, Caenorhabditis elegans neurons lose axon regeneration ability as they age, but it is not known why. Here, we report that let-7

Read More