Nature2014-06-25 5:19 PM

标绘酵母的基因差异 Genetics of single-cell protein abundance variation in large yeast populations


很多DNA变体通过改变一个或几个基因的表达水平来影响表现型,因此人们目前对标绘这些“表达量化性状位点”(eQTL)很感兴趣。这篇论文介绍了一个新的eQTL标绘(mapping)方法,它设计用来克服现有方法的局限性(现有方法所关注的是RNA或蛋白丰度)。该新方法依靠GFP(绿色荧光蛋白)标记来测定酿酒酵母中的单细胞蛋白丰度。然后,混合测序(Pooled sequencing)方法被用来对数千个蛋白丰度高和蛋白丰度低的人的整个基因组中的等位基因频率进行比较。作者发现,对一个给定的基因来说,在影响mRNA和蛋白丰度的等位基因(位点)之间存在密切对应关系,同时他们也识别出了影响多个蛋白的热点位置——后者对基因调控网络有深远影响。


Variation among individuals arises in part from differences in DNA sequences, but the genetic basis for variation in most traits, including common diseases, remains only partly understood. Many DNA variants influence phenotypes by altering the expression level of one or several genes. The effects of such variants can be detected as expression quantitative trait loci (eQTL). Traditional eQTL mapping requires large-scale genotype and gene expression data for each individual in the study sample, which limits sample sizes to hundreds of individuals in both humans and model organisms and reduces statistical power. Consequently, many eQTL are probably missed, especially those with smaller effects. Furthermore, most studies use messenger RNA rather than protein abundance as the measure of gene expression. Studies that have used mass-spectrometry proteomics reported unexpected differences between eQTL and protein QTL (pQTL) for the same genes, but these studies have been even more limited in scope. Here we introduce a powerful method for identifying genetic loci that influence protein expression in the yeast Saccharomyces cerevisiae. We measure single-cell protein abundance through the use of green fluorescent protein tags in very large populations of genetically variable cells, and use pooled sequencing to compare allele frequencies across the genome in thousands of individuals with high versus low protein abundance. We applied this method to 160 genes and detected many more loci per gene than previous studies. We also observed closer correspondence between loci that influence protein abundance and loci that influence mRNA abundance of a given gene. Most loci that we detected were clustered in ‘hotspots’ that influence multiple proteins, and some hotspots were found to influence more than half of the proteins that we examined. The variants that underlie these hotspots have profound effects on the gene regulatory network and provide insights into genetic variation in cell physiology between yeast strains.






Nature Magazine

0 Following 27 Fans 0 Projects 626 Articles


Meristems encompass stem/progenitor cells that sustain postembryonic growth of all plant organs. How meristems are activated and sustained by nutrient

Read More

Transcription of ribosomal RNA by RNA polymerase (Pol) I initiates ribosome biogenesis and regulates eukaryotic cell growth. The crystal structure of P

Read More

Abstract The effect of anthropogenic aerosols on cloud droplet concentrations and radiative properties is the source of one of the largest uncertainti

Read More

Abstract Ecological and societal disruptions by modern climate change are critically determined by the time frame over which climates shift beyond his

Read More

Abstract Evidence from Greenland ice cores shows that year-to-year temperature variability was probably higher in some past cold periods, but there is

Read More

Abstract The land and ocean act as a sink for fossil-fuel emissions, thereby slowing the rise of atmospheric carbon dioxide concentrations1. Although t

Read More

论文摘要 人们已经非常清楚生物多样性对初级生产力等生态系统功能有一个积极影响,但它对植物凋落物的多样性和分解植物凋落物的生物的多样性的影响却不是很清楚。Stephan H?ttenschwiler及同事对从亚北极到热带、包括水生生态系统和陆地生态系统在内的五个地点所进行的并行操纵实验中的凋落物多样性进

Read More

论文摘要 FANTOM5 (即“哺乳动物基因组-5的功能注解”) 是一个大型国际合作项目的第5大阶段,其目标是分析定义每个人类细胞类型的转录调控网络。本期Nature上的两篇Articles论文发表了该项目的一些最新结果。第一篇论文利用FANTOM5项目组的组织和原代细胞样本来定义整个人体中活性的、在

Read More

论文摘要 有证据表明,血管 (尤其是它们的内皮细胞) 控制器官的生长、平衡和再生。在本期Nature上发表的两篇论文中,Ralf Adams及同事证明,骨头血管含有专门支持骨成熟和再生的内皮细胞。Anjali Kusumbe等人在小鼠骨骼系统内识别出一个在介导骨生长中起关键作用的毛细血管亚型。这些血管

Read More

论文摘要 CD4 T细胞(携带能够识别被病毒感染的细胞表面上的CD4抗原的受体的辅助T细胞)的丧失是艾滋病发病的根源。在这项研究中,Warner Greene等人识别出静止的淋巴CD4 T细胞在HIV感染过程中被耗尽的机制。利用保持了天然淋巴环境的人淋巴组织的体外培养,本文作者发现,失败的病毒复制触发

Read More