JIJITANG2014-08-25 2:34 PM

VISION GETS ‘TURNED UP’ WHEN MICE RUN

A brainstem circuit in mice could help explain how active movement changes the way the brain processes sensory information.

“Previous studies have examined changes in the visual cortex of mice during running. What was unknown was how do running and vision get linked together in the first place?” say Cristopher Niell, biology professor in the Institute of Neuroscience at the University of Oregon and the senior author of a paper in Neuron.

The “aha moment” that inspired the study came five years ago when Niell, as a postdoctoral fellow in Michael Stryker’s lab at the University of California, San Francisco, was examining visual perception in mice. He observed that running appeared to be changing how neurons in the brain were firing.

“We found that running turned up the magnitude in the mouse’s visual cortex by about two-fold—the signals were basically twice as strong when the mouse was running,” Niell say. The initial finding demonstrated a mind-body connection in the mouse visual system. Following up on this finding, Niell’s team sought to identify neural circuits that could link movement and vision together.

The researchers focused on the brain’s mesencephalic locomotor region (MLR), which has been shown to mediate running and other forms of activity in many species. They hypothesized that neural pathways originating in the MLR could serve a dual role—sending a signal down to the spinal cord to initiate locomotion, and another up to the cortex to turn up the visual response.

Using optogenetic methods, the team created genetically sensitized neurons in the MLR region of the mouse brain that could be activated by light. The team then recorded the resulting increased visual responses in the cortex.

Their results demonstrated that the MLR can indeed lead to both running and increased responsiveness in cortex, and that these two effects could be dissociated, showing that they are conveyed via separate pathways.

Next, researchers activated the terminals of the neurons’ axons in the basal forebrain, a region that sends neuromodulatory projections to the visual cortex. Stimulation here also induced changes in the cortex, but without the intermediary step of running. Interestingly, the basal forebrain is known to use the neuromodulator acetycholine, which is often associated with alertness and attention.

HUMANS, TOO?
It is unclear whether humans experience heightened visual perception while running, but the study adds to growing evidence that the processes governing active movement and sensory processing in the brain are tightly connected.

Similar regions have been targeted in humans for therapeutic deep-brain stimulation to treat motor dysfunction in patients with Parkinson’s disease. Activating this circuit might also provide a means to enhance neuroplasticity, the brain’s capacity to rewire itself.

“While it seems that moving and sensing are two independent processes, a lot of new research suggests that they are deeply coupled,” says lead author Moses Lee, a visiting scholar from the University of California, San Francisco. “My hope is that our study can help solidify our understanding of how the brain functions differently in ‘alert’ states,”

Other authors include researchers from Johns Hopkins School of Medicine and the University of California, Berkeley.

The National Institutes of Health supported the research.

Original Article: 
《Identification of a Brainstem Circuit Regulating Visual Cortical State in Parallel with Locomotion》, Published on Journal 《Neuron》in June 12, 2014. 

KEYWORDS

SHARE & LIKE

COMMENTS

ABOUT THE AUTHOR

JIJITANG

0 Following 3 Fans 0 Projects 310 Articles

SIMILAR ARTICLES

Changes to the Special Supplemental Nutrition Program for Women, Infants, and Children (WIC) have resulted in families eating more fruits and vegetable

Read More

In contests drawn from game theory, chimpanzee pairs consistently outperform humans in games that test memory and strategic thinking.A new study, condu

Read More

Publishing is one of the most ballyhooed metrics of scientific careers, and every researcher hates to have a gap in that part of his or her CV. Here’s

Read More

Pornography triggers brain activity in people with compulsive sexual behaviour -- known commonly as sex addiction -- similar to that triggered by drugs

Read More

In a recent survey, academic staff at the University identified the interrelated skills of writing and reasoning as the two most important skills for s

Read More

In a recent survey, academic staff at the University identified the interrelated skills of writing and reasoning as the two most important skills for s

Read More

Reading cautionary tales like The Boy Who Cried Wolf and Pinocchio to little kids might not be the best way to teach them to tell the truth.New researc

Read More

Those flat, glassy solar panels on your neighbor’s roof may be getting a more efficient makeover, thanks to a new class of solar-sensitive nanoparticle

Read More

Physicists have overcome a major challenge in the science of measurement using quantum mechanics. They’ve used multiple detectors to measure photons in

Read More

If you want to slow down long enough to smell the proverbial roses, you might want to move to a neighborhood with fewer drive-thru restaurants, researc

Read More