University of Missouri2014-08-29 4:41 PM

TIM-family proteins inhibit HIV-1 release

Significance


TIM-family proteins have been recently shown to promote viral entry into host cells. Unexpectedly, we discovered that human TIM-1, along with TIM-3 and TIM-4, potently inhibits HIV-1 release. We showed that TIM-1 is incorporated into HIV-1 virions and retains HIV-1 particles on the plasma membrane via phosphatidylserine (PS), a phospholipid that is exposed on the cellular plasma membrane and the viral envelope. Expression of TIM-1 inhibits HIV-1 replication in CD4+ T cells, and knockdown of TIM-3 in monocyte-derived macrophages enhances HIV-1 production. We extended this function of TIMs to other PS receptors, and demonstrated that they also inhibited release of additional viruses, including murine leukemia virus and Ebola virus. The novel role of TIMs in blocking viral release provides new insights into viral replication and AIDS pathogenesis.


Abstract


Accumulating evidence indicates that T-cell immunoglobulin (Ig) and mucin domain (TIM) proteins play critical roles in viral infections. Herein, we report that the TIM-family proteins strongly inhibit HIV-1 release, resulting in diminished viral production and replication. Expression of TIM-1 causes HIV-1 Gag and mature viral particles to accumulate on the plasma membrane. Mutation of the phosphatidylserine (PS) binding sites of TIM-1 abolishes its ability to block HIV-1 release. TIM-1, but to a much lesser extent PS-binding deficient mutants, induces PS flipping onto the cell surface; TIM-1 is also found to be incorporated into HIV-1 virions. Importantly, TIM-1 inhibits HIV-1 replication in CD4-positive Jurkat cells, despite its capability of up-regulating CD4 and promoting HIV-1 entry. In addition to TIM-1, TIM-3 and TIM-4 also block the release of HIV-1, as well as that of murine leukemia virus (MLV) and Ebola virus (EBOV); knockdown of TIM-3 in differentiated monocyte-derived macrophages (MDMs) enhances HIV-1 production. The inhibitory effects of TIM-family proteins on virus release are extended to other PS receptors, such as Axl and RAGE. Overall, our study uncovers a novel ability of TIM-family proteins to block the release of HIV-1 and other viruses by interaction with virion- and cell-associated PS. Our work provides new insights into a virus-cell interaction that is mediated by TIMs and PS receptors.


Full Article:

http://www.pnas.org/content/early/2014/08/14/1404851111.abstract

KEYWORDS

SHARE & LIKE

COMMENTS

ABOUT THE AUTHOR

University of Missouri

0 Following 0 Fans 0 Projects 4 Articles

SIMILAR ARTICLES

SignificanceTIM-family proteins have been recently shown to promote viral entry into host cells. Unexpectedly, we discovered that human TIM-1, along wi

Read More

Abstract Bottlenecks, founder events, and genetic drift often result in decreased genetic diversity and increased population different

Read More

 AbstractThe principal goal of protected area networks is biodiversity preservation, but efficacy of such networks is directly linked to animal movemen

Read More

AbstractPlant germination and growth can be influenced by sound, but the ecological significance of these responses is unclear. We asked whether acoust

Read More