JIJITANG2015-01-09 3:31 PM

Peek under the hood of a working enzyme


Open any biology or chemistry textbook and entire chapters will be dedicated to detailing molecular processes crucial to life that are only made possible by seemingly magical proteins called enzymes.

The magic is not fully understood, however, and each book will offer a somewhat different explanation for how enzymes work.

Now, chemists have peered inside a working enzyme and found that local electric fields focused at the active site might play a big role in helping it accelerate reactions.

The results are published in the current issue of Science.

Without enzymes, life isn’t possible

Nearly every process in cells—DNA replication, protein synthesis, metabolism of food into energy, and even steroid production—is made possible by an enzyme interacting specifically with its target substrate to transform it into something useful.

Oftentimes, the reaction is so slow that it would take billions of years to occur without the enzyme’s involvement. Enzymes can accelerate these slow reactions by up to 25 orders of magnitude, and with great selectivity.

But when scientists have tried to design new enzymes, even by following the atomic blueprint of well-studied enzymes, things just don’t seem to click.

“Clearly it’s important to have the right pieces in place, but there seems to be something more,” says Steven Boxer, a chemistry professor at Stanford University and senior author on the new study.

“There are a lot of really strong opinions about this, but one idea that’s emerged, mostly from simulations, is that electrostatic interactions within the enzyme might play an important role lowering the barrier for the reaction, but we haven’t had a way to measure this until now,” adds Boxer.

One thing that scientists know happens when an enzyme is at work is that it binds the target molecule to its own “active site.” Here, the enzyme helps break and form bonds, transferring electrical charges around as it transforms the molecule in a step-by-step fashion.

This movement of charge interacts with electric fields from specific hydrogen bonds and other interactions between the enzyme and the molecule upon which it’s acting, called a substrate.

Some chemists have theorized that such electrostatic fields lower the barrier for the reaction as the substrate transitions to the final product, and that the better this connection, the more proficient the enzyme’s action.

A really big boost

The researchers applied a modern twist on a 100-year-old technique for measuring electric fields, and probed the active site of ketosteroid isomerase (KSI), an enzyme responsible for steroid metabolism. They found that the enzyme exerts an extremely large electric field on the substrate, and this would give a major boost to a molecule that would otherwise be sluggish to react.

Next, they repeated the experiment on versions of KSI featuring slightly altered active sites that were previously shown to be less effective at catalyzing the reaction. In comparing the natural KSI output to the mutants, the chemists found that the electrostatic field in the native enzyme was extremely large and responsible for as much as 70 percent of KSI’s performance.

“The reality is that it was never going to be all one thing or another, but 70 percent is a very significant contribution, and these experiments tell us that the electrostatic field is directly impacting the rate in this case,” Boxer says.

“This shows that the electrostatic field lowers the barrier to reaction, and is really the key to catalysis in this enzyme.”

The effect is likely preserved across other enzyme systems, Boxer says, but its degree of contribution likely varies depending on the molecules involved.

What the discovery means

The new approach they have developed can be used to better quantify the electrostatic contribution to catalysis in other enzymes, so perhaps other chemists could use this information to make existing enzymes more efficient, or design novel enzymes or even chemical catalysts that amplify the electrostatic field.

“This work is basic science, and on its own is not going to solve the energy crisis or anything like that,” Boxer admits. “But it will help us to better interpret a lot of good data that’s already out there, and in the broader sense this will help us understand what’s so unique about enzymes based on fundamental physical concepts.”


Original Article :

《Extreme electric fields power catalysis in the active site of ketosteroid isomerase》,Published on Journal 《Science》on 19st December , 2014

KEYWORDS

SHARE & LIKE

COMMENTS

ABOUT THE AUTHOR

JIJITANG

0 Following 3 Fans 0 Projects 310 Articles

SIMILAR ARTICLES

Changes to the Special Supplemental Nutrition Program for Women, Infants, and Children (WIC) have resulted in families eating more fruits and vegetable

Read More

In contests drawn from game theory, chimpanzee pairs consistently outperform humans in games that test memory and strategic thinking.A new study, condu

Read More

Publishing is one of the most ballyhooed metrics of scientific careers, and every researcher hates to have a gap in that part of his or her CV. Here’s

Read More

Pornography triggers brain activity in people with compulsive sexual behaviour -- known commonly as sex addiction -- similar to that triggered by drugs

Read More

In a recent survey, academic staff at the University identified the interrelated skills of writing and reasoning as the two most important skills for s

Read More

In a recent survey, academic staff at the University identified the interrelated skills of writing and reasoning as the two most important skills for s

Read More

Reading cautionary tales like The Boy Who Cried Wolf and Pinocchio to little kids might not be the best way to teach them to tell the truth.New researc

Read More

Those flat, glassy solar panels on your neighbor’s roof may be getting a more efficient makeover, thanks to a new class of solar-sensitive nanoparticle

Read More

Physicists have overcome a major challenge in the science of measurement using quantum mechanics. They’ve used multiple detectors to measure photons in

Read More

If you want to slow down long enough to smell the proverbial roses, you might want to move to a neighborhood with fewer drive-thru restaurants, researc

Read More